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ABSTRACT

Particle flows occur in a very wide range of industrial applications. In a Discrete element
model (DEM) the motions of the individual particles in the system are tracked. The model
simulates all the interactions between the particles and their environment. The goal is to
predict the macro-properties of the flow and the modelling of the separate particles is only
as accurate as required for this global aim. It is necessary to simulate particles of many
different sizes and densities interacting with complex shaped surfaces.

1. INTRODUCTION

The discrete element method (DEM) has been developed to simulate flows in
which the motion has discontinuities that are not modelled well as a continu-
ous fluid. For example because the particles are too big, the particle density
is too low or the frictional effects in the particle contacts are too large. Since
the DEM models flow at the particle level, a realistic representation requires
the use of high performance computers (HPC). The modelling of particle flows
has many industrial applications including grinding and crushing [1], silos and
bins [8] and conveyors in a variety of areas. Recent applications also include
the simulation of crowd evacuation from burning aircraft and buildings[10].
The DEM dates from the 1970’s [3] and early models were two-dimensional
and assumed that all particles were circular. There is usually a need for a high
density of particles in an effective simulation, so that the efficient use of HPC is
essential. It is only recently that the availability of sufficient computing power
has led to the implementation of 3-dimensional models that incorporate more
complex particle shapes. The shape of the model particles does not have to
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be a highly accurate representation of the real particle geometry, the only
requirement is that it induces the appropriate model dynamics. Although
the goal of the DEM model is the simulation of the gross behaviour of the
flow, it is the interaction of the individual particles that drives the model.
Super-ellipsoids (or superquadratics [13], [5]), given by:
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can assume a variety of axi-symmetric shapes by varying the principle axes
a, b and ¢ and the sharpness of the edges determined by the indices m and
n, usually m = n. Most of the computational effort is spent in resolving
the contact between particles and moving from circular to non-circular par-
ticles represents a dramatic increase in the complexity of this aspect of the
simulation. In the case m # n a more convenient form is
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as this has a parametric representation with p = — and ¢ = — in the form
n m

x = asin(@p)? cos(Y)? y = bsin(¢)?sin(¢)? 2z = ccos(¢)? (1.3)

A number of other alternative shape representations have been suggested with
a view to simplifying the contact resolution[4].

2. COLLISION DETECTION

A vital aspect of discrete element modelling is the detection of particle colli-
sions. For large scale industrial modelling such detections must be fast and
efficient. In rigid body mechanics, the particles move through space and the
collisions are instantaneous and do not occur at regular intervals. A soft parti-
cle model allows particles to overlap and uses the size of the overlap (typically
<1.0% overlaps are desirable) to determine the forces acting on the colliding
particles. These forces are then applied to define the resultant motion of the
particles. The model can then be integrated in regular time steps, typically
between 20 and 50 time steps are required to accurately integrate each colli-
sion. In hard particle models, no overlap is possible, thus when an overlap is
detected the simulation must back-track to the instant of first contact (which
is different for each pairwise contact), compute the forces on impact and then
rerun the simulation for the colliding particles from the moment of impact to
the end of the time step (assuming no further contacts).
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For particles defined by a boundary surface f(z) =0, such as (1.1) or (1.2)
the contact problem reduces to root finding. If the two particles are defined
by the surfaces

flz)y=0 and g(x) =0

then for each particle we can define concentric surfaces f(z) = ¢ and g(z) = ¢,
if ¢ < 0 these are internal to the particle and if ¢ > 0 they are external. We
can identify a point halfway between the two surfaces such that

flz) =c=g().

As the two surfaces are tangential at the common point, the normals are in
opposite directions. Thus we solve (using Newton-Raphson) the system

Vf+a’Vg=0, f-g=0 (2.1)

for the coordinates (z,y, z) and the scaling factor a. If the solution is f =
g > 0 then the particles have not collided yet, if the solution is f = g < 0 then
there is interpenetration and the solution gives the common normal at a point
between the two surfaces (the point of the collision) see figure 1, from which
it is possible to determine the depth of the penetration. The figure shows a
simple example of the collision of two 3-D particles moving and rotating only in
the zy-plane. (The overlap illustrated is much larger than would be acceptable
in a practical simulation and gravity has not been included.) In the figures,
the feint dashed lines indicate the concentric superellipsoids used to compute
the contact normal and the asterisks indicate the "depth" of overlap in the
normal direction, or are the the "closest" points for nonoverlapping particles.
If it is then assumed that the maximum penetration is in the direction of
the common normal, the calculation of the depth of penetration involves two
more nonlinear equations to be solved (separately) by Newton-Raphson. The
total computational effort is then solve a system of 4 simultaneous nonlinear
equations (2.1) and (if there is contact) two single nonlinear equations. An
alternative formulation [7] is to compute the solution of

ming(xz) such that f(z)=0 (2.2)
for one contact point, and

min f(z) such that g(z) =0 (2.3)

as the other. If we use the parameter a® as a Lagrange multiplier, then
computing each point involves solving a slightly different nonlinear system

namely,
Vfi+a?’Vg=0 ¢g=0
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for problem (2.2) and
Vg+a?Vf=0 f=0

for problem (2.3).
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Figure 1. Contact surface

In numerical experiments with this form, as in figure 2, the line joining
the contact points is frequently significantly skewed from what would be a
reasonable nmormal direction and this has an effect on the subsequent reso-
lution of the forces. The simulation of particle-particle collisions, together
with the particle-solid collisions at the boundary, is an obvious candidate for
parallel computing as it is an application of the type often characterized as
embarrassingly parallel. It is however vital to have an efficient collision de-
tection algorithm that scales as O(N) with N particles. A simple search of
all combinations will scale as O(N?) and is completely impractical for large
scale simulations. A scheme where the particles have address tags works well
[8] and is suitable for a parallel implementation. The size of the cells in the
partition is comparable to the size of the particles so that good initial approx-
imations can be defined so that the Newton-Raphson iteration will converge
rapidly to a contact point.

Partitioning the domain so that it is only necessary to check for contact be-
tween near neighbors reduces the number of possible contacts, but the number
of actual contacts will only be a fraction of the number possible. Unfor-
tunately, when the particles are highly non-spherical, then a computational
problem suffered by both methods of contact detection is the non convergence
for near misses when contact does not take place. A more efficient method
is to use the parametric definition of the surfaces (1.3) and for each pair of
neighbouring particles to define a mesh on one particle. If all the points of
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Figure 2. Maximum depth penetration

the mesh lie outside the other particle, checked using (1.2), then no contact is
possible, otherwise the first point inside is taken as the initial approximation
for the Newton-Raphson iteration. Another alternative that avoids the need
for any non linear solver is to use a mesh search to find the deepest penetra-
tion and hence solve (2.2) then reverse the roles of the surfaces and perform
a second mesh search to solve (2.3).

3. CONTACT FORCES
Once the depth of penetration and the normal direction have been computed

the forces can be computed.
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Figure 3. Collision Model

The soft particle model uses a simple spring and dash pot (see figure 3) to
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estimate the collision forces. The normal force is

F, = —kAz + Cv, (3.1)
and the tangential force is

F; = min{pF,,Cv} (3.2)

where:

e Az is the particle overlap,

e k and C are the constants for the spring and dash pot damping respectively,
e v, and v; are the normal and tangential velocities,

e 4 is the friction coefficient.

4. COLLISION RESOLUTION
Given the forces F; = Z Fjj acting on a particle ¢ colliding with particle 7,

J
it is possible to integrate the equations of motion
m;&; = F; + fi

Ii}"eizzainFij Z:]-"”’N
J

where a;; is the vector from the centroid of particle ¢ to the point of the
collision with particle j. The external force on particle ¢ is denoted by f;, this
may be gravitational in a mill simulation, or steam pressure in a wood-pulp
refiner or pressure towards an emergency exit in a crowd simulation.

5. APPLICATIONS TO THERMOMECHANICAL PULPING

Many stages of the pulp processing within a modern paper mill have been
simulated using mathematical modes, often in terms of finite element models
of the fluid flow, e.g. [11]. A discrete element model is appropriate for a
simulation of the pulp refiner where the flow, at least at input, cannot realis-
tically be modelled as a fluid. The input to the refiner is in the form of wood
chips forced by high pressure steam, the output is wood pulp. Between the
input and output, the three dimensional wood chips are effectively reduced to
one-dimensional cellulose fibers. Pulp is produced by grinding wood chips in
a refiner that has two grinding discs with patterned surfaces. The chips are
broken by impact with the bars. The chips are forced between the discs by
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the steam pressure. The disks typically run at 2000rpm and the density of
wood fiber is very high, i.e. there are a large number of wood chips entering
the refiner. There is typically stagnant pulp partially filling the stationary
grooves.

A realistic model of the gross behaviour within the refining process should
be able to model meaningful parameters such as the energy consumption and
the distribution of fiber length in the output pulp (a measure of the quality).

Successful DEM simulations for a typical ball mill (with stone chips) run-
ning at 700rpm with 30k particles have been reported [2], where it is quoted
that 1 second of simulated time that may take a few hours of CPU time on
a workstation. The simulations have been used to estimate the power con-
sumption. Grinding mills typically have poor energy efficiency (1-5%) which
is of the same order of efficiency as in thermomechanical pulping.

Existing mechanistic models of pulp refiners, such as [6] that assume axial
symmetry of the refiner disc and approximate the pulp densities as continuous
functions of r and ¢. They are able to forecast the motor load and temperature
as functions of the varying input. The motor load can be determined from
the forces of the collisions on the refiner plates. The efficiency with the chips
are broken into fibers is highly correlated to the pattern of bars on the discs
but such a simple model is unable to simulate the effects of these non axi-
symmetric patterns. The particles to be modelled are of very hot, very wet
wood, the spring and damper constants in the DEM model need to be chosen
to represent the properties of such wood sufficiently accurately. There is an
ongoing research project [12] funded by the Swedish National Graduate School
in Scientific Computing (NGSSC) which should provide the data required for
accurate simulation. The distribution of fiber length can only be simulated if
there is a model of the particle fracture processes. The particle can break in
two distinct ways:

e A series of small impacts will cause a particle to split along the fiber, thus
preserving the fiber length. One of the axis of the particles is identified as
the directions of the fibers and the particle is replaced by several smaller
particles by partitioning along the other two axes of the particle.

e A single large impact will break the particle in a direction that is not
necessarily aligned with the fibers and hence, in general, reduces the fiber
length. The fracturing can be viewed as chopping along the particle axis
that is aligned nearest to the direction of the impact force.

So in order to model both forms of fracturing, it is necessary inter alia, to
estimate the work done by successive small impacts. In any fracturing, there
is a loss of soluble (non cellulose) mass of the particle that must also be
modelled.
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6. CONCLUSIONS

The discrete element method is an effective technique for modelling granular
flows when the aim is to model the global properties but the mechanics is
driven by the friction effects at the particle level. A realistic model is very
compute-intensive as it incorporates several thousand particles and this is now
possible given the availability of modern high performance computers.
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DALELIU JUDEJIMO DISKRECIUJU ELEMENTU MODELIS
R. Wait

Daugelyje industriniy taikymy nagrinéjamas daleliy judéjimas. Si metodika remiasi visy
daleliy saveikos modeliavimu. Darbe keliamas tikslas i§tirti ir prognozuoti tekéjimo mak-
rosavybes, remiantis Siuo tikslu parenkamas modelio tikslumas. Kiekvieno eksperimento
metu modeliuojamas labai didelio skai¢iaus jvairiy dydziy daleliy judéjimas, itirta tokiy
daleliy saveika su sudétigos formos pavir§iais. Aptartos lygiagreciyjy algoritmy panaudo-
jimo galimybés.



