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ABSTRACT

Center manifold approximations for the 1D Landau-Devonshire and 3D Falk-Konopka mod-
els are applied to modelling phase transitions in shape memory alloys. The methodology, al-
lowing a systematic improvement of mathematical models for phase transitions and hystere-
sis phenomena, is explained, and typical computational results with such low-dimensional
models are presented.

1. INTRODUCTION: PHASE-FIELDS MODELS, COUPLING
PHENOMENA, AND HYSTERESIS

Practical materials science has always provided mathematicians with chal-
lenging and important problems which stimulated the development of new
numerical methods, new mathematical modelling tools, and generated new
ideas applicable in other fields of engineering applications. Indeed, the ba-
sic physics of complicated materials is still only partially known, and when
it comes to dynamic non-equilibrium phenomena in such materials the com-
plexity of associated problems increases substantially.

My major focus in this paper is on materials with memory, in particular
on shape memory alloys (SMA). The shape memory effect was discovered
around 1938 by A. Greninger, V.G. Mooradian, and G.V. Kurdumov, but only
recently the use of shape-memory materials has become a viable technology
with an industry growing at more than one quarter of its size each year. I
aim at a systematic description of coupled thermomechanical fields in such
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materials and my basic tools here will be center manifold theory [4; 19; 20]
and numerical techniques for solving differential-algebraic equations.

The approach to modelling in materials science adopted in this paper goes
back to works by Landau and Khalatnikov who assumed that a continuous,
possibly multicomponent, conserved or nonconserved field function (order pa-
rameter or phase-field parameter) can be used to characterized the phase of
a material. Then, the state of the material can be described by the temper-
ature, order parameter, and, perhaps, some other state variables, so that by
using principles of irreversible thermodynamics one can proceed to the model
construction by deriving evolution equations for this state. Such models are
known as phase-field models and their mathematical analysis has been a sub-
ject of a number of recent papers (e.g., [10] and references therein). Examples
of phase-field models where this idea is used include the Allen-Cahn model
for the description of polycrystalline solids, the Penrose-Fife model (of which
the Cahn-Hilliard model is a special case), and many others. The phenom-
ena described by such phase-field models are quite complex and often require
incorporating hysteresis coming naturally from nonlinear dynamics, coupling
(e.g., via constitutive relations), and/or consideration of nonconvex poten-
tials. Although hysteresis comes naturally into consideration in such classical
fields as plasticity, ferromagnetism, ferroelectricity, its rigorous treatment has
been initiated relatively recently with works by Krasnoselskii & Pokrovskii
(see [10] and references therein). This phenomenon has to be dealt with in
shape memory applications as well, in particular in the pseudoelastic range.
In fact, at the macroscopic level three main patterns of behaviour of shape
memory alloys are of interest [2]: (a) the pseudoelastic effect (large elas-
tic deformations resulted from loading can be recovered through hysteresis
upon unloading); (b) the shape memory effect (large residual deformations
resulted from loading-unloading can be recovered upon heating); (¢) thermal
hysteresis effect (the ability to reproduce both deformed (low temperature)
and undeformed (high temperature) states upon cooling/heating at constant
load). Each of these patterns can be clearly observed with the models dis-
cussed here (see [13; 14] and references therein for further details). What is
even more important, these models can be systematically improved to capture
new features of the dynamics by using the methodology applied in this paper.

2. THE LANDAU CRITERION AND GOVERNING EQUA-
TIONS FOR SMA PHASE TRANSITIONS

Several different methodologies have been proposed in the literature in order
to adequately describe the dynamics of phase transitions between different
equilibrium configurations of the metallic lattice of SMA, known as austenite
(high temperature phase), and martensite (low temperature phase, and, ulti-
mately, to control this dynamics. Earlier mathematical models developed in
this field had a number of limitations [21] related to the treatment of spatial
effects and thermomechanical coupling, and at a large extent those limitations
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are inherited by some of multi-well mixture approaches [7]. In attempts to
improve those earlier models several groups of models have been developed
in the literature, main of them are based on phenomenological constitutive
laws with or without volume fraction as internal variables, phase diagram ki-
netics, and so-called micro-macro thermomechanical models (e.g., [2; 7; 11;
16]). In this paper, we base our consideration on the Landau-Devonshire-
type models and their generalization to the 3D case in the spirit of Falk &
Konopka (see [13; 14] and references therein). However, the same idea can
be applied to other models in this field and our main goal in this paper is to
explain foundations and to show the effectiveness of center manifold technique
in capturing main features of the dynamics of phase transitions, allowing a
systematic improvement of the resulting computational models.

The basis for modelling is the Landau criterion stating that any isothermal
equilibrium configuration of the lattice corresponds to a minimum (global or
local) of the free energy function. The free energy function strongly depends
upon the statistics of the phenomenon and has to be derived from a statistical
model (see also [6] for other non-trivial issues related to the choice of the free
energy function). Our consideration in this paper is pertinent to the following
general form of this function:

T(e,0) =¢°(0)+Z¢"<e,0), w"=2¢;1f, P°(0) =90(0), (2.1)

where e is the deformation gradient, 6 is the temperature of the system (6 > 0,
inf(g,+ 0 = 0), Y™, n = 1,2,... are strain invariants that define independent
material parameters of the n-th order, and Z7' are the corresponding strain
invariants. The upper limit of the sum in (2.1), j, is chosen as the number
of all invariant directions associated with a representation of the 48th order
cubic symmetry group of the parent (austenite) phase in order to make the free
energy function invariant with respect to the symmetry group of austenite.
The equation of motion, written with respect to displacements u, has the

following form

o? .
pa—tgzv-erF with F=p(f+ ) —pv, (2.2)

where p is the density of the material, f is a given body force per unit mass,
p and f are nonlocal mass and force residuals respectively, v = du/0t is the
velocity vector, and s is the stress tensor. The energy balance equation can
be represented in the form

Oe

PR T- . ]
Pe =8 (V0)+V-q=g, (2.3)

where e is the internal energy (per unit mass) of the system, g is the heat



Phase transition and hysteresis analysis for shape memory alloys 303

3
flux, a¥ : b = Z a;;jb;; is the standard notation for the rank 2 tensors a
i,j=1
~ ~ /02
and b, and g =p(h+h) — pf-v—75 (e - ?) with h being the heat source

density, and h is the nonlocal energy residual (see [13] and references therein
for conditions on localized residuals). The right-hand sides of equations (2.2)
and (2.3) incorporate into the model nonlocal and dissipative effects of ther-
momechanical waves.

We assume that there exists a one-to-one entropy function of the system
state and denote its density by 1. Thermodynamic potential, invariant un-
der a time shift, is defined in the form of the Helmholtz free energy through
7, internal energy, and the temperature of the system as ¥ = e — n with

n = ~30 " Having the free energy function, we define the shear stress by

its three components: the quasi-conservative component, s?, the stress com-
ponent due to mechanical dissipation, s™, and the stress component due to
thermal dissipations, s?, (the latter is assumed to be negligible).

The specific form of the free energy function is chosen in such a way that
its minima, correspond to different phases of the material, and depending on
the value of temperature, we mimic the behaviour of the material which can
alternate between a single thermodynamically unstable nonmonotone branch
and multiple unstable branches. The coupling between stresses, deformation
gradients, temperature and heat fluxes is specified by constitutive relations

@1(3,6) =0, ¢2(q70) =0, (2'4)

where it is implicitly assumed that these relations may involve spatial and
temporal derivatives of the functions. The specification of &, is made by
using the principles of extended thermodynamics, requiring the hyperbolic
Cattaneo-Vernotte model to be satisfied

Oq

5, = k0.9, (2.5)

q+To
where 79 is the dimensionless thermal relaxation time and k(6, €) is the thermal
conductivity of the material (typically k = 1+ 6 with the given dimensionless
coefficient j3).
To specify functional dependency ®; we start from the 1D case of the
Landau-Devonshire form for the free energy function (e.g., [8; 15; 21]):

(0, €) = Yo(6) + 11 (0)1h2(e) + s(e), (2.6)
where 10(0) = ap — a101n6 models thermal field contributions, 1)1 (6)1)2(€)
(with 91 (6) = 120 and ¢2(e) = € ) models shape-memory contributions,

1 1 1
and y3(€) = — 392 6162 — et et gae €% models mechanical field contributions
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(all @; and 6; are positive constants). Such a choice of the Helmholtz free
energy function satisfies all requirements of the Landau theory of structural
phase transitions, or more precisely, its modification to account for 6th order
polynomials (a polynomial of the 4th order cannot describe twinning effects).
Note that, as it is pointed out in [13], with reported values of vy ~ 10710 —
10~'2, accounting for the Ginzburg term (v/2¢2) has a negligible effect in the
series of computational experiments conducted in this paper and in [13; 14].
Then, the functional dependency of ®; is taken as

s:p[p(G,e)-i—)\(%, %)] , (2.7)

96 e O gz with i and 7 being

v
where p(0,¢€) = %—6 and A 5 E) = ﬂ(@)a + (€)=
material-specific coefficients that characterize the dependency of the stress on
the rate of the deformation gradient and temperature, respectively.

In the 3D case the situation is much more involved. Using (2.1) and Falk-
Konopka assumptions valid for the copper-based alloys (see [14] and references
therein) it is possible to reduce the number of required parameters in the 3D
case from 32 to only 10 material constants (or more generally, temperature
dependent functions)

3 5 2
U =900) + D_ 0T + 3 UT + D UL, (28)
j=1 j=1 j=1
where, for example, the Cuj4A13Nigs strain invariant Z2 is determined by
2 1 2 1 2
I = E(2633 — €11 —€22)" + 1(611 — €22)". (2.9)

The corresponding (to Z2) material coefficient is temperature dependent

Y3 = (1.41 x 10° + 46(8 — 300)) g/(ms’*cm). (2.10)

3. CENTER MANIFOLD TECHNIQUE IN MODELLING
SHAPE-MEMORY-ALLOY DYNAMICS

Several computational approaches have been already applied to modelling dy-
namics of phase transitions and hysteresis phenomena in shape memory alloy
materials (e.g., [7; 8; 15] and references therein). However, as was pointed out
in [7], the phenomenon of phase transitions in SMA materials is “sufficiently
complex such that any computational treatment attempting to capture the
macroscopic response of a structural system composed of these materials nec-
essarily requires significant simplifications to result in a tractable problem”.
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Such systematic simplifications of models describing the dynamics of SMA are
proposed here via the application of center manifold theory.

Reduction procedures of original models on center manifolds are used widely,
for example, in different approaches for computing normal forms applied to
the analysis of dynamical systems described by differential equations. Nor-
mal forms are quite useful in the analysis of non-linear oscillations [9], and the
normal form methodology and center manifold theory are often considered to-
gether, because a sequence of successive non-linear transformations is actually
reduces the original system to a center manifold associated with the critical
modes. The current methodology of the normal form method is attributed to
Bruno (e.g., [3] and references therein) who published his first works on the
topic in the early 1960-ies. Approximately at the same time the first works
on center manifold theory have been published by Pliss (see [5; 17; 18] for the
latest theoretical development of this theory and references therein to earlier
works). After the appearance of a classical monograph by James Carr [4]
the interest in an effective combination of these two intrinsically connected
methodologies has been growing [5].

Invariant sets are at the heart of studying dynamics [17]. Center mani-
fold theory is a method of reducing the system dimensionality and restricting
attention to an invariant subspaces (the center manifold) which contains all
of the essential dynamic behaviour of the system. The fundamental poten-
tial in the applicability of center manifold theory to such complex problems
as the dynamics of phase transitions is that the methodology can deal suc-
cessfully with such cases where invariant sets (or invariant manifolds of the
dynamics described by differential equations) might become non-hyperbolic.
Since such sets cannot persist in general [12] the problem is to construct a
normally hyperbolic (invariant) manifold which contains the invariant set of
the smallest possible dimension. This manifold is known as a center manifold.
The construction of such a manifold is a challenging and, generally speaking,
tremendous task. With the advance of computer algebra this construction
can be performed effectively. This idea has been applied for the first time to
shape-memory alloys models by the author and his collaborators [13; 14].

The basic idea of our approach is to express the physical fields in terms
of asymptotic sums in some vibrational amplitudes and their gradients, and
then, to find an asymptotic approximation to the system of PDEs describing
the dynamics of SMA by using computer algebra. Such a low dimensional
model is derived systematically, up to the arbitrary order of accuracy. In fact,
it is this link of center manifold theory with computer algebra that makes this
tool one of the most powerful tools in the analysis of complex mathematical
models.

To demonstrate the basic principles of the methodology, we follow [14] and
consider a shape memory alloy slab with large extend in the x = z; direc-
tion compared to its thickness of 2b in the y = x5 direction (—b < y < b)
and neglect any motion and dependence in the z3 direction. In this case all
related physical fields can be expressed in terms of the amplitudes of the cross-
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sectional averages of critical modes, remaining the leading order structure of
the critical eigenmodes constant across the slab [14]:

Uie,t) =05, Vi(z,t) =7, 0'(z,t)=0, (3.1)

where an over bar denotes the y-average quantity and 8' = 6 — 6y (6 =
300°K). Then, we seek a model that is written in terms of amplitudes (3.1).
In other words, we seek an invariant (low-dimensional) manifold upon which
these amplitudes evolve “slowly|:

Uj :ui(U7V7®I)7 Vi = vi(U7V7®I)7 0= T(U7V7®I)7 i = 1727 (32)

where

an _ 1 3Vi _ ! 00’ — !

The last set of relationships is the reason why center manifold theory is often
regarded as a certain generalization of ideas coming from the implicit theorem
to the analysis of ordinary and partial differential equations. Now, we have to
substitute (3.2) into the original model (2.2), (2.3) and to solve the resulting
system with respect to small parameters 8,, E = |U || +||V ||, and 9 = ||©’||
(see details in [14]). This results in approximations of (3.2), which can be
obtained up to the arbitrary order accuracy. For this purpose we use the
computer algebra package REDUCE. Specific approximations obtained along
this avenue of ideas can be found in [13; 14]. These approximations are used
after the solution of the corresponding system with respect to U, V, and ©.
The system for the center manifold approximation of the 3D Falk-Konopka
model has been derived in [14] and in the case when the slab is thin enough so
that in effect b = 0 this system can be written in the form differential-algebraic
equations as follows

( 6‘/1 _ 88 6U1 _
ST P
00" %0’ , oy OUL OV4
Cvﬁ —kW‘F(Cll +012(") —013((“)) )%6—:[;
4
< +(C +ec 0’)% % 3+ % % 5+ (3 )
14T Tox \ ox “8%5z \ or 9
oU U \* UL \°
| o=l - T - -ar) () v (5)

where all coefficients ¢ are positive material constants. It should be empha-
sized that the vector field of the original dynamics in the construction of the
center manifold will typically changed, and therefore an important issue to
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address is the appropriate approximations of boundary and initial conditions
for the center manifold approximation of the dynamics. These issues are out-
side the scope of the present paper, but the interested reader can consult [19;
20] and references therein for further details.

Center manifold models for the classical 1D Landau-Devonshire model and
the 3D dimensional Falk-Konopka model, as described in Section 2, have been
used to model phase transitions and hysteresis phenomena in shape memory
alloys. Time dependent external actions on the system (stresses and heat
fluxes at the boundary, as well as distributed over the domain) are easily
treated with the derived models. In particular, experiments have been carried
out for thermal control of phase transitions with constant mechanical forc-
ing and time-varying thermal forcing chosen as A sin®(t7/B) (in g/(ms®cm)
units) with various coefficients A and B. A typical result from this series
of experiments is given in Fig. 1, where martensitic-austenitic transitions are
clearly reproduced.

displacement

300

temperature
N
a
o
strain

N
wo
oo

Figure 1. Typical results from the shape memory effect modelling: ther-
mally induced phase transitions.

A number of experiments related to mechanical control of phase transitions
(without thermal forcing, but with time-varying mechanical forcing) has also
been performed. It has been also demonstrated that boundary stress control
of phase transitions might not be sufficient to induce martensitic-austenitic
transitions, while a combined effect of boundary stress and distributed temper-
ature can produce the desired result (see Fig. 2 and further details in [13]).
Details of computational experiments on “ferroelastic™~ and “pseudoelastic’-
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like hysteresis can be found in [13], where the behaviour of temperature-strain
relations has also been analyzed and the “parabolic™like shape of temperature-
strain hysteresis loops obtained with Landau-Devonshire types models have
been explained for the first time.

The same methodology, as described here, can be applied to models other
than Landau-Devonshire or Falk-Konopka models, providing an efficient tool
for a systematic improvement of mathematical models for phase transitions
and hysteresis phenomena, and making computations tractable for engineering
applications.

displacement

5000

stress

-5000

temperature

—10000
30

Figure 2. Temperature controls thermodynamic barriers allowing phase
transitions even if the tensile (boundary) load is less than the yield limit.
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Fazinio perne§imo ir histerinés analizés terpése su formos atmintimi

taikymai

R.V.N. Melnik

Straipsnyje centriniy daugdary aproksimacija vienmaciams Landau-Devonskine ir trimaci-

ams Falk-Konopka modeliams pritaikyta faziniams perneSimams terpése su formos atmintimi.

Metodologija leidZia sistemingai tikslinti foninio pernesimo reiSkinio modelius. Pateikti tip-
iniai modeliavimo rezultatai maZos dimensijos modeliams



