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ABSTRACT

This paper deals with a system of nonlinear differential equations, which describe the
interaction of two focused laser beams in nonlinear media. The system of equations is
approximated by a splitting finite difference scheme. A parallel version of the
finite-difference scheme is proposed and the efficiency of this algorithm is investigated.
Calculations are performed using clusters of computers, connected via local computer
network. The emphasis is made on solving this problem on heterogeneous clusters. In the
paper a static distribution scheme is analyzed. The results of several computational
experiments are presented. Data redistribution during an initial phase of computation is
investigated and the influence of slow communication among the processes is taken into
account during this analysis.

1. INTRODUCTION

We consider the problem of two counteracting focused laser beams in non—
linear media. It is described by the system of nonlinear equations in QQ =
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{(z,r,t): 0<z<L, 0<r<R, 0<t<T}h
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where e, 5, 05 are laser, Stokes and hyper sound waves complex amplitudes
respectively, Z, t , r are non-dimensional coordinates, ur, s = ﬁ , kr.s
are modules of the wave vectors, I'y,, I's, I', are the coefficients of nonlinear
counter-action, ay s are laser and Stokes wave absorption coefficients, 1, g
are the nonlinear refraction indexes.

Boundary conditions are defined on the edge of the region Q:

€L (0,7“, t) = ei (’I", t) » €8 (L,T, t) = 6}6' (’I", t) ) (14)
CL(Z,R,t)ZO, GS(Z,R,t)ZO,
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or L\~,Y, — Y or S\~ Y, — Y-
The initial conditions are given at t=0:
er (Z,’I",O):e% (Z,T‘), €s (Z,’I",O)ZC% (Z,T), (15)

os (z,7,0) = 02 (2,7,0).

2. FINITE DIFFERENCE SCHEME

We solve the system of equations (1.1) - (1.5) using the finite difference
method.

2.1. Definition of the discrete grid

Let the computational space @ be covered by a grid @; x W, X @,

W =Atpn=n1,n=0,1,....K, tx =T},

N2 22
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where f is the focus of the lens, Zgp = 0.5kwy?, wp is the width of the initial
signal. An example of the discrete grid is given in fig. 1.

Figure 1. An example of the discrete grid.

We denote the discrete approximates of the functions e;, and eg by w and
v. The following notations are used in our paper:

u=u(2j,Tk,tn), v=0(z2,Tk tn),
’LL(—]_) =u (ijlark,tn) ) ’U(—].) =v (ijlark,tn) )

~

U=u(zj,Tk,tny1), U=0(2j,Tk,tnt1) -

The function og is approximated by the discrete function ¢, which is defined
on the grid wy X W, X wy:

@, ={2j_1pp=(j—05)7,j=1,2,...,N, 2y =L} .

2.2. The splitting scheme

We will solve the system of equations (1.1) - (1.5) using the splitting scheme.
The differential operator is split up into pieces corresponding to different
physical processes.

2.2.1. The first splitting step: diffraction

doulEl) g, ZEruEl) aziru(Ch (2.1)
2 2 2
v(—l)—u_iuSAv(—12)+v+%v(—l)+v _o (22)
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The functions u and v are expanded in series

P
u(—1) = ZCZ (Zj—1,tn) Li (Zj—1,78) , Tk € Wr (Zj-1),
=1

where L; are the Laguerre-Gauss functions. Then we find the coefficients

1—-0.57az
Ci(Zj,tns1) = mcl (Zj—1,tn)

P
U= ZCZ (Zj>tn+1) L (Zj)rk) y Tk € Wy (ZJ) .
=1

2.2.2. The second splitting step: the nonlinear counter-action
First, we calculate the predictor o¥ of the sound wave:

of —o of +o w4 u(=1) v* +v*(=1)

=T 2.3
T T2 2 (2:3)
then we approximate the nonlinear counter-action process
u® —u oP +o0v° 4w
= —1lr )
T 2 2
* - (2.4)
v —v r oP+o\ u’+u
S\ 2 2
and finally we compute the corrector of the sound wave:
o—0o g+o u® +u v +v*
=T . 2.5
- +a - o 2 9 ( )
2.2.3. The third splitting step: nonlinear self-focusing
G = exp (mL (|u°|2 + 2|v°|2) T) ue, (2.6)
~ . ~12 02 o
v =exp (mg (|u| + 2[v° ) 7') v°. (2.7)

Theorem 2.1. The solution of the finite difference scheme (2.1) - (2.7) con-
verges to the solution of the problem (1.1) - (1.3), and the speed of the con-
vergence is estimated as O(T + h?).

This theorem is proved by using the method from [2]. Extensive results of
numerical experiments are given in [1], [3].
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3. PARALLEL IMPLEMENTATION OF THE ALGORITHM

In this section we investigate the parallelization of the algorithm (2.1) - (2.7).
The machine model assumed in our paper is that of a distributed memory
system. The parallel computer is composed of p heterogeneous processors,
labeled from 1 through p. Processors communicate through message passing.

Our goal is to decompose computations into tasks and assign these tasks to
different, processors. The optimization objective for partitioning is to balance
the workload among processors and to minimize the interprocess communica-
tion costs [4]. We decide to distribute the data along the z dimension.

Two different situations arise when we try to solve the load balancing prob-
lem. The first case is considered in this section. During regular phase of
implementation of the scheme (2.1) — (2.7) the whole grid w, X w, is in-
volved in the computation. In data parallel computation the problem domain
is decomposed into p sub-domains and these sub-domains are allocated to
processors. The processors simultaneously perform the same functions with
different data sets. The execution time of processor ¢ is proportional to the
amount of grid w, points allocated to processor i. Denote the computational
power of the processors by a vector (vy,vs, ..., v,) and assume that

U1 SUQ S ...Svp.
We use a static data decomposition. The data is aligned to different processors
once at the beginning of computation. As was stated above we distribute data
arrays along the z dimension and keep them local to each processor along the
r dimension. The grid w, is distributed by using the block scattering model
and processor i gets the block of N; points, where NN; is defined as

Vi .
N; = N, i=23,...,p,
¢ Lvl+v2+...+UpJ p

Ni =N —(Ny+ N3+ ...+ Np).

The sub-domains are connected at their boundaries, hence after the real-
ization of each time step of the algorithm (2.1) — (2.7) processors exchange
their overlapping boundary information with nearest—neighbors. Only bound-
ary vectors of 2D arrays of discrete functions u and v are included into the
messages. These synchronization points divide the computation into phases
and the duration of the phase is determined by the heavily loaded processors.

In the case of homogeneous processors, i.e. vy = vy = ... = v, , such a
parallelization of the serial code can be implemented with High — Performance
— Fortran (HPF) [4], [5].

3.1. Performance of the parallel code

Results of the measurements of performance of the parallel algorithm (2.1)
— (2.7) are presented in this section. The simulation was done for P = 10,
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Table 1.
The speedup and efficiency of the parallel algorithm for N = 300.
P Time T} Speed-up S(p) Efficiency E(p)
1 334.3 1.00 1.00
2 187.1 1.79 0.89
3 134.7 2.48 0.83
4 113.0 2.96 0.74
5 108.7 3.08 0.62
Table 2.
The speedup and efficiency of the parallel algorithm for N = 500.
P Time T}, Speed-up S(p) Efficiency E(p)
1 961.3 1.00 1.00
2 506.5 1.90 0.95
3 351.1 2.71 0.90
4 297.4 3.23 0.81
5 250.1 3.84 0.75

M = 150, L = 10, T = 45 and two different values of the grid parameter
N =300 and 500. We evaluated the relative speedup S(p) and the efficiency

E(p):

<
S

where T} is the CPU time on one processor, and 7}, is the CPU time using p
processors.

Table 1 displays the results for N = 300 and table 2 gives the results for
N = 500. A homogeneous cluster of RS600 workstations with PVM message—
passing library was used in our experiments.

From results given in the tables it is clear that the efficiency of the parallel
algorithm increases when the value of N increases, as it follows from the
scaled-size-problem theoretical analysis.

We also carried out experiments with heterogeneous clusters of worksta-
tions. The computational power of one processor was v; = 1/3 , while the
other processors had the computational power v; = 1 for ¢ = 2,...,p. In
table 3 we present CPU times for homogeneous Thomoq(p) and heterogeneous
Theter (p) strategies of data distribution.

It can be seen from table 3 that a good load balance is obtained in the case
of the heterogeneous data distribution algorithm. Static mapping is quite
effective for computations that have predictable workloads of the sub—tasks.

3.2. Distributed remapping problem

In this section we consider parallelization of the algorithm during initial transi-
tion stage, when the computational region is gradually filled from left to right.



64 R. Ciegis, A. Dement’ev, P. Raté

Table 3.
The speedup and efficiency of the parallel algorithm for N = 500.
p Thomog (p) Theter (p)
2 520.1 270.7
3 361.3 161.6
4 304.2 129.7

During this phase the computational workload of the problem increases lin-
early from time step to time step. Let denote this workload at time moment
tj by

3.2.1. Static task distribution

One processor will spend the time 77 for solving the whole problem till the
time moment ty:

N
T =y = DN (32)

If we statically decompose data area into p equal sub-domains and distribute
them to processors, we get the computation time T},:

N/p
, N\ YN N (2p—1_ 1
T:E:]—F(N——)—:—( N+—>.
? ].:17 p) p p\ 2 2

Then the speedup S(p) of the parallel algorithm is given by

(N +1)p?

S = G DN

(3.3)

For large N we can estimate the speedup S(p) and the efficiency E(p):

2

p p
S(p) ~ E(p) ~ .
(p) o1 (p) -1

We see that E(p) — 1/2 for large p. Now we will find the optimal static
domain decomposition.

Theorem 3.1. Let the computational workload of the problem is defined by
(3.1). Then the optimal block distribution of the grid w, is obtained when the
grid is decomposed into p + 1 sub-domains and the processor p gets two last
sub-domains.
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Proof. We will study the cases of p = 2 and p = 3. A general result can be
obtained from a similar analysis.

Let assume that we have two processors and decompose the grid w, into
two sub-domains with K and N — K points, respectively. It is sufficient to
study the case K < N/2 (see fig. 2).

Figure 2. The decomposition of the grid for p = 2.

During time steps 1 < j < K only the first processor is involved in
computation, during time steps (K + 1) < j < 2K both processors com-
pute, but the workload of the first processor is larger, and during time steps
(2K+1) < j < N the duration of a phase is determined by the workload of the
second processor. Taking into account (3.1) we get the following computation
time estimate:

N
K(K+1 .
o) = FEEV e S ok
j=2K+1
3K2+K N(N+1
= =1 (2+ ) KN +1).

The optimal decomposition parameter K is obtained from the equation
, 1
TQ(K):3K+§—N—1:0,

it is given by Ko = (N 4 0.5)/3.

Now assume that we have three processors and decompose the grid w, into
three sub-domains with K;, K> and N — K; — K> points, respectively (see
fig. 3). The computation time T5(K7, K3) can be estimated as:
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Figure 3. The decomposition of the grid for p = 3.
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Optimal decomposition parameters K; and K are obtained from the following
system of equations

s = Ky +3K;— N -4 =0,

s =3K, + K, — N —§ =0,

and they are given by K; = (N + 0.5)/4, K2 = (N + 0.5)/4. Note that
a general case of p processors can be investigated by using the symmetry
analysis.

Table 4 presents the speedup S(p) of the parallel algorithm for the static
domain decomposition into p sub-domains and the speedup S,(p) and the
efficiency E,(p) for the optimal static domain decomposition. It can be seen
from the table that the optimal mapping algorithm is important only for a
small number of processors.

3.2.2. Data redistribution algorithm
It follows from results given above, that the static domain decomposition is not
satisfactory, since computational workloads across the processors are not even
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Table 4.
The speedup and efficiency of the static decomposition for N = 200.
P S(p) So(p) Fo(p)
2 1.336 1.500 0.750
3 1.804 2.000 0.667
4 2.291 2.500 0.625
5 2.784 3.000 0.600

during execution. Hence we will use the dynamic remapping algorithm [4].
Dynamic remapping produces better load—balances at the cost of additional
data communication overheads. Therefore an application of redistribution
algorithm must produce enough benefits that would outweigh the run—time
overheads incurred.

The communication costs of sending one message with M columns of data
are estimated as:

Teomm = o+ 6M7 (34)

where « is a startup time, and (3 is a time required to send one column of
data. We have that 3 > « for large computation grids.

The optimal redistribution step. In this section we determine the size
of the redistribution interval. The computational workload is estimated by
model (3.1) and communication costs are given by (3.4).

The following algorithm is proposed. We simulate twice the computation
time T),(r) required to implement 2p steps of the basic splitting scheme, where
T, (p) denotes the computation time for the parallel algorithm with distributed
remapping after p steps and T,(2p) denotes the time obtained without redis-
tribution. If T, (p) < T,(2p), then the optimal number of simulation steps
between two successive redistribution instances is p. Else we compare T),(2p)
and T,(4p), i.e. the redistribution algorithm is implemented after 2p simula-
tion steps. Such process is iterated till we find that T,,(Ip) < T,(2Ip) for some
l.

We present examples of this analysis. Let consider the case of p = 2. The
computation times T5(2) and T»(4) are given by

T5(2) =6y+2a+208, Tx(4)=Ty+a+20.
Therefore, if « < 7 then the optimal number of simulation steps between
two successive redistribution instances is 2. Otherwise we compare T5(4) and
T>(8), it can be easily verified that

T>(4) =23y + 2a+ 48, T2(8) =26y + o +40.

Therefore, if @ < 3y then the optimal redistribution step is 4. We see that
only startup time and computation costs are important in this analysis.
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Similarly in the case of p = 3 we get that
T3(3) = 9v+2a+ 48, T3(6) = 11y + o +40.

Dynamic load balancing. In this section we find when the remapping of
data should be invoked. Let assume that the optimal redistribution step is p.

We compare two strategies of computation : the static data distribution
during the whole simulation and dynamic data remapping, when the redistri-
bution step is involved once at time moment ¢ _2,. If the dynamic remapping
is a more efficient strategy, then the same algorithm is applied to the grid w,
with NV — 2p points. The algorithm is iterated till we find the grid for which
static decomposition is optimal.

As an example we apply this algorithm to the case p = 2. It can be easily
verified that

3N2 + 4N 3N2 —4N +8
S, Toldynemic) = =y v a+ g

T»(static) = 3

We see that the redistribution of data should be invoked at the end of
computation if

a+6§(%+1)7-

From this inequality we can determine the number Ny which defines the start-
ing point of the redistribution strategy:

2(a+p)
Y

Ny = -1

4. CONCLUSIONS

A splitting finite difference scheme is presented to solve a problem of nonlinear
optics. The parallelization of the algorithm is investigated. Static data decom-
position is used to decompose the problem domain into p sub-domains. The
efficiency of this algorithm is investigated for homogeneous and heterogeneous
clusters of workstations. We found that the parallel algorithm is effective if
the workloads of processors do not change during the whole computation time.

We also investigated the load balancing problem for an initial stage of com-
putation, when the computation region increases linearly from time step to
time step. The optimal static subdivision of the domain is obtained for this
problem. Dynamic remapping algorithm is investigated in order to improve
the load balancing. Our theoretical model gives a condition when the remap-
ping of data should be invoked and the frequency of redistribution process is
determined.
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NETIESINES OPTIKOS UZDAVINIO LYGIAGRETUSIS
SKAICIAVIMO ALGORITMAS

R. CTEGIS, A. DEMENT’EV, P. RATE

Straipsnyje sprendziama netiesiniy diferencialiniy lyg¢iy sistema, aprasanti lazerio spin-
duliy saveika netiesinéje terpéje. Sudaryta diskrecioji iSskaidymo schema bei pateikta ly-
giagrecioji algoritmo versija. IStirtas lygiagreciojo algoritmo efektyvumas. Skaiciavimai
atlikti virtualiajame kompiuteriy, sujungty lokaliuoju tinklu, klasteryje. I§samiai tiria-
mas algoritmo efektyvumas heterogeniniams lygiagretiesiems kompiuteriams. Duomeny
paskirstymui naudojamas statinis paskirstymo metodas. Pateikti ir iSanalizuoti duomeny
perskirstymo algoritmai, pagerinantys darbo paskirstymo tolyguma pradinéje skaiciavimy
fazéje. Teorinéje analizéje atsizvelgiama i duomeny perdavimo kastus.



