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ABSTRACT

Degenerate matrix method for numerical solving nonlinear systems of ordinary differential
equations is considered. The method is based on an application of special degenerate
matrix and usual iteration procedure. The method, which is connected with an implicit
Runge-Kutta method, can be simply realized on computers. An estimation for the error of
the method is given.

1. INTRODUCTION

Many problems of physics and mathematics reduce to solving nonlinear sys-
tems of differential equations. Many classical methods for the numerical solu-
tion of such systems are developed: different versions of Runge-Kutta method,
multistep Adam’s methods and so forth. If the solution of a system is very
smooth, for example, analytical, then high precision spectral or pseudospec-
tral methods can be used. All these methods have been programmed for
computers. In this paper we propose a method which we call the DM-method
(degenerate matrix method). It is based on the global nonsaturated inter-
polations and on the application of special degenerate matrices in multistep
procedures by means of iterative loops. According to the character of ap-
proximation, the method proposed here is similar to the collocation version of
the spectral methods [1]. However, these methods differ essentially from each
other by numerical realization. Spectral methods use the discrete transforms,
while the proposed method applies the special pseudoinverse matrices and the
usal iteration process. DM-method can be presented also as implicit Runga-
Kutta method or a modification of the collocation scheme. These methods
are given in [3,4]. Mathematical algorithm for a solution has been represented
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in matrix form. Therefore, the method can be used for nonlinear systems of
arbitrary degree and simply programmed for computers. The rapid conver-
gence of the iteration process and the possibility to calculate the elements
of matrices by elementary representations with a very high precision gives
us the numerical solutions of differential equations with the precision near to
the working precision on computers. For example, calculations by means of
the software package ”Mathematica-3” give the possibility to find solutions of
nonlinear systems of differential equations with a precision of 10~°° or higher.

2. MATHEMATICAL BASIS OF THE METHOD

To obtain a numerical solution of the system

d
% = fk(t;ylawa--:ym): yk(a') = Qf, k= 1727"'?m (21)

in the interval ¢ € [a,b] we recommend the DM-method (degenerate matrix
method) based on an application of special degenerate matrices together with
iteration process. We start from Lagrange’s interpolation with nodes a =
to <ty <...<tny1 =Db. Let us assume that gy42(¢) is a polynomial, which
has zeroes t;, ¢ = 0,1,...,N + 1, and the function y(t) is approximated by
Lagrange’s interpolation polynomial

y(t) = Ln11(y,t) = an42(t) Igf % (2.2)
, k=0 (t - tk)Q?VJrz (tk)

Then the approximation
YN42 X ANj2Y N2 (2.3)
holds for the vector of derivatives
Yivaz = {9/ (t0), 4 (1), ..y (tn4)} (2.4)
and for the vector of the functions
yn+2 = {yto),y(t), -, y(tna)} (2.5)

contracted on nodes t;. Here Ao is the (N + 2) x (N + 2) interpolation
matrix for derivatives which has elements [2]

‘1§V+2 ()
(ti — tk)qn o (tr)

i
t
itk gy = W2 o N

Oik =
‘ 29N (tk)
(2.6)
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The interpolation matrix for derivatives Apn,o is always degenerate and
rankApni2 = N + 1. As the matrix Ao has no inverse, we define the fol-
lowing pseudoinverse matrix.

DEFINITION 2.1. Matriz By 2 is called a pseudoinverse matrix for Anyo if
the equality

BryioAnte =Enie —Ingo (2.7)

holds, where En o is the identity matriz and all elements of Inyo are zeroes
except each element of first column is the digit 1.

Contracting the system (2.1) on nodes t; and replacing derivatives by (2.3)
we reduce this system into the following matrix form

AN 2Y[N +2,m] =F[N +2,m], (2.8)
where Y[N +2,m] and F[N +2,m] are (N +2) X m matrices with the elements
Yir ~ yr(ti) and fir, = fio (L, y1(t), y2(ti), - .. ym(ti)) , (2.9)

respectively. Multiplying the equation (2.8) from the left side by a pseudoin-
verse matrix Byyo = hGn42, we obtain

YN +2,m] = hGn42F[N +2,m] + Yo[N +2,m]. (2.10)

Here Yy is matrix (IV + 2) x m; its elements are the inital values of unknown
functions yx(a) = ay, given by (2.1), i.e.,

yW =y, i=0,1,... N+ Lk=12...,m. (2.11)

The system (2.10) can be solved iteratively if a norm of the matrix By o is
small enough. The properties of the solution of (2.10) depend on the choise of
the nodes t; and the matrix B 2. The most important properties of matrices
Apnyo and By are the following.

LEMMA 2.2. Substitutingt = ax+ 3 and t; = ax; + (3 leads to multiplying the
matrices Any2 and Byio by factors a and 1/a, respectively.

LEMMA 2.3. Elements d;(m) of the m-degree matriz A2, i.e., of the ma-
triz A%, 5 are exact representatoins

dye = =™ 5 (_l)qu;])(t’[) ifi#k
Ao (ti) 5 (m— )Nt — ta) 7+ ’
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gt ()

(m + 1)Q§v+2(tk) ’

i (m) = i,k=0,1,...,N + 1. (2.12)

Proof of this Lemma is given in [2].

LEMMA 2.4. Matrix Any2 has the representation
Anjo = (DVN+2)V1Q1+2, (2.13)

where V1o and DV i are the Vandermonde matriz and its derivative
respectively to nodes to,t1,...,tN+1-

Proof. For any polynomial Pni2(t) the formula P]’\,+2 = ANy2Pnyo is ex-
act. Taking Pnyo equal to 1,¢,¢%,...,tN 1 we obtain the equalities, which
may be joined in one matrix equality

AN+2VN+2 - DVN+2. (214)

Multiplying (2.14) from the right side by the matrix VX,IH, which exist be-
cause to,t1,...,tn41 are different numbers, leads to (2.13). O

LEMMA 2.5. Matriz An42 is degenerate and the rankAni2 = N + 1.
Proof is gained from the Lemma 2.4.

LEMMA 2.6. A pseudoinverse matriz By o is not unique for the given matriz
Apnyo. The general form for the elements by, of Byio is

0 &

bi = bV + — (t),i,k:0,1,2,...,N+1, (2.15)
AN 42\ lk
1 b
where bgg) = — / an+2(7) dr, (2.16)
Unp2(te) Joy T =tk

and c; are arbitrary constants not depending on k.

Proof. At first we prove that the matrix BS\%_Q with elements (2.13) satisfies

the matrix equation (2.7). Integrating the identity

N+1

Phiya(tn)
Phio(t) = an2(t) A (2.17)
S kz:% (t = tr) o (k)
on the interval [tg,t] leads to
N+1 1 t
Pris(tr) [* anya(r)
Prni2(t) — Pri2(to) = AR / dr. (2.18)
* * kZ:o Unga(tr) Jog Ttk
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Contracting this equality at nodes t; and writing ones in the matrix form, we
can obtain

Pz =B LPh s + Pyia(to)Lvio, (2.19)
where 1x41 = (1,1,...,1)T. Substituting Py, = Ani2Pnyo gives the
matrix equation

(BS\?LQAN+2 - EN+2 + IN+2)PN+2 =0 (220)

for each polynomial Pyyo(t). It follows that the matrix 135312 is a pseudoin-
verse matrix for An 2. Let us the vector w o is a nontrivial solution of the
equation wy2An12 = 0. By means of the equality

3 L dvaeo(t) (2.21)

it is possible to prove directly that one of the nontrivial solutions is

1 1 1
Un o (to)’ qf\r+2(t1) T

S (2.22)

’ CI§V+2 (tN+1)

O

COROLLARY 2.7. The general form for the pseudoinverse matriz Byyo cor-
responding to ANy s

Byyo = B53)+2 + diag(co, Cly... ,CN+2)WN+2, (223)

where elements of Bg\?)+2 are given by (2.16), elements of W yo are wy, =
1/ qnyo(te), ik =0,1,...,N + 1, and ¢; are arbitrary constants. The choise

of ¢; allows to use various pseudoinverse matrices for the given matriz An4o.

LEMMA 2.8. For elements b;y, of each pseudoinverse matrix By 2, in the case
of N > 2 the following equalities hold

N+1
> b =ti—to, i=0,1,...,N+1. (2.24)
k=0

Proof. We have for bgg) by (2.16) and (2.1) with y(¢t) =1
N+1

t; N+1 an 2(7_) t;
S =[S ir=[ dr=ti-t.
k=0 to k=0 to

(T — tk) o (tk)
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For the b;;, in general equalities hold by the (2.15) and by the identity

N+1 (.’17 _ tk)m

=0,m=0,1,...,N, (2.25)
5—0 I o (tr)

and arbitrary z. The identity (2.20) can be proven using the classical Cauchy
residue theorem for the contour integral in the following way:

1§_:1 7(27 _ tk)m = %res[ (m _ )m tk] =
5—0 Tnvpo(tr) o qn+2(2)’
1 (a:—z)mdz:_ (x —2)™ o] =
2mi ﬁ qN+2(2) el qn+2(2) 0

where L is a closed contour in the complex z-plane which includes strictly in
itself the points t;. O

LEMMA 2.9. For the norm of each pseudoinverse matriz By o with elements
(2.15)-(2.16), we have the inequality

N+1

= ikl > — 1.
BN 2]l pmax ];) |bik| > tn41 — to

Proof. |Byyall > max | Y n 0" big| = max|t; — to| =ty — to. O

Futher we choose the nodes ¢; and the corresponding pseudoinverse matrix
By 12 to ensure the following two properties:

1) The approximation of functions is nonsaturated, that is, the rate of the
convergence increases together with the smoothness of functions under the
approximation.

2) ||Bn2|| = tn41 — to, that is, the norm is the minimal possible.

The first property guarantees that an error for the smooth solution under
approximation is small, but the second one allows to eliminate round-off errors
by the increasing N. These two properties hold true if we choose, for example,
¢;=0,i=0,1,...,N + 1 (the method is a collocation method [3]) and

X
N+1

ti=a+0.50b—a)(l+ =), z; =cos (2.26)

Elements by, for the matrix B2 are present in the form by = (b — a)gix,
where

1 ¥ pNyo(z) ,
ik = d:l?, )= (1 -2\ Un(z). 297
gik 2p9v+2(1'k) /_1 T — T pN+2(7) = ( YUn () ( )
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Un(z) is the Chebyshev’s polynomial of the second kind. The elements g;y
do not depend on the interval [a, b] and

N+1
= x| = 1. 2.2
IGrvall = s, 3 I (228)

Moreover, the elements g;; have the following simple exact representations by
elementary functions which are very suitable for calculations by computers
with any desired precision:

_ 2N2 + 4N + 1+ (=1)(N + 1)%z; — N(N + 2)]

. 2.29
91,0 AN(N + 1)2(N +2) ’ (2:29)
. (DN + ()N +1)%2; + N(N +2)]} (2.30)
i+ = AN(N + 1)2(N +2) ’ '
1 N
= i, n] si 1)65, 2.31
= S
where 1 =0,1,2,...,.N+1, k=1,2,...,N,
. cos(n + 3)0; cos(n—1)8; cos(n+1)6; 2
sli,n] = + - -
4(n + 3) 4(n —1) 2(n+1) (n? =1)(n+3)
if n>2 and
s[i, 0] = (1 +2:)*(2 — @) /3; s[i, 1] = (1 - 27)*/2,
Hi = Wi/(N-F 1),£Ei = —COSQi.
Now we obtain instead of (2.10) the equation
Y[N +2,m] = hGn2F[N +2,m] + Yo[N + 2,m)]. (2.32)
Due to the equality ||Gn42|| = 1, the sufficient condition for convergence of

the iteration process is the inequality h . < 1, where L is a Lipschiz’s constant
for the system (2.1) on [a,b]. This condition guarantees that the nonlinear
operator hGn2F[N + 2,m] in (2.20) is a contracting operator mapping the
space of (N + 2) x m matrices into itself. For the large interval [a,b] it is
necessary to divide it into small enough parts a = hg < hy < ... < h, = b,
and to solve the system (2.1) in each subinterval [h;, hy41], [ =0,1,...,n—1,
separately. In addition, the solution at the points ¢ = h; 1 must be choosen as
an initial value for the solution in the next interval [hj41, hi4+2]. The matrix
Gpn 42 does not change, but the new nodes t;, £k = 0,1,..., N + 1 may be
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calculated by (2.26) with @ = hy,b = hyy; and h = h;y1 — hy. Thus, the global
solution for system (2.1) can be found by using the aforementioned multistep
procedure involving iterative loops.

Comentaries. 1. In practice the condition Lh < 1 or the choice of step h can
usually be determined by means of analysis of the rate of convergence in the
iteration procedure. Also, the number of relevant iterations can be chosen in
various ways. For example: until the fixed point is reached, until the required
precision is attained, and so forth.

2. The step h and the number N of interior nodes on the subinterval
are independent of each other. By repeating calculations of the solution for
various N and comparing the obtained results, we can also make a conclusion
about the precision of the final result.

3. If certain functions of the solution increase (decrease) rapidly, then
the Lipschitz constant can be reduced for the next step by a substitution
yi(t) = exp(M\it)vi(t),7 = 1,2,...,m, with suitable constants \;. Thus, it is
possible to choose a larger step for this case.

4. DM-method can be used as a starting method for multistep methods.

3. THE ESTIMATION OF THE ERROR OF THE METHOD

The precise solution y(t;) and rough solution g (#;) of (2.1) contracted on
nodes by (2.26) satisfy the matrix equations

YN +2,m] = hGn2F[N +2,m] + Yo[N +2,m] + R[N +2,m], (3.1)

Y[N +2,m] = hGnoF[N + 2,m] + Yo[N + 2,m], (3.2)
respectively, where elements of matrix R[N + 2,m] are

t;
Tik = Rnii(fe,7)dr, (i =1,..., N+ L;k=1,...,m), (3.3)

to

and Ryy1(f,t) = f(t) — Lyy1(f,t) is the remainder of Lagrange’s interpola-
tion (2.2) with nodes (2.26), where fi (t) = fi(¢,y1(t),-..,Ym(t)). Further, we
will suppose that the functions yi(t) and fi(t) are elements of some function
space C*[to,tn+1]. The elements r;; can be estimated in various way. Let
us assume that, for all i,k, |rjx| < ho(N,h) holds. Then according to the
nonsaturatedness of the interpolation [2] we have

MsIn(N +1)

o(N,h) < N+

(3.4)

Here M is a constant which does not depend on i,k,N. For small h =
tn+1 — to we have

o(N,h) < /tNH |Ry+1(fi, D)ldt = O(h™*?) (3.5)

to
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as an estimation for the remainder of an interpolating quadrature.
We denote a norm of the error-matrix by

e = [YIN +2,m] - V[N +2,m]|| = 0<Iga}§+12|yk )=kt (36)

and also suppose that the iteration process goes on until the fixed point is
reached. Taking into account the condition Yo = Y the error of the solution
can be estimated on the first step in the following way:

mh[L

EN S qU(N,h)/L, where q= m

(3.7)

Now suppose that we realize n equal steps and nh = b — a. If e%), (j =

1,2,...,n) is the norm of error-matrix on the j-th step defined analogously as
n (3.6), then the following recurrence inequality can be proved for es\?) after
a simple but lengthy conversion:
n—1 _
65\?) < qz 65\],) + nqo(N,h)/L, 65\1,) =en. (3.8)
j=1
Solving these inequalities we obtain
eV <ng(1+9)" o (N, )L, (n=1,2,...), (3.9)

where (N, h) and ¢ are given by (3.4)—(3.5) and (3.7) respectively. Therefore,
by (3.4)-(3.5) and (3.9) we conclude that if 0 < mhL < 1:

1) 65\7;) =O(hN*2) as h — 0, N is fixed;

2) 65\?) =0 ((N+1)~*'In(N +1)) as N = +o0.

The O-character of the error can be observed by practical calculations too.
For example, we consider numerical results for the Lorenz’s system

& = o(y—u=)
y = re—zxz—y oc=10, r=28, b=8/3 (3.10)
zZ = xy-—bz

with the initial values 2(0) = 96/100 and y(0) = 2(0) = 0 in the interval
t € [0,1]. The solution at point ¢ = 1 obtained by means of the DM-method
with precision of 10759 is

z(1) = —9.4185265666 8328650990 6763403446 0148597258 7325487820

y(1) = —9.1460603281 9364807619 4431441281 1484693600 3068231643
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Table 1.
Numbers of the correct decimal places of the solution.

| N/h | 025 | 02 | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.0025 |

3 0-1 23 3-5 5-6 7-9 | 9-10 | 11-12
(384) | (133) | (84) | (60) | (44) | (37) | (31)

7 12 | 24 6 810 | 9-10 | 16-17 | 19-20 | 22-23
(231) | (175) | (96) | (68) | (52) | (40) | (34) | (29)

11| 34 | 67 9 | 12-13 | 18-20 | 24-25 | 28-30 | 33-34

(152) | (126) | (80) | (60) | (48) | (38) | (32) | (28)

15 | 56 | 89 | 1214 | 17 | 23-24 | 32-33 | 38-39 | 43-44
(125) | (107) | (73) | (55) | (44) | @36) | 31) | (27

19 | 78 | 11-12 | 15-16 | 21-22 | 2829 | 41 | 47-48 | 54-55
(110) | (97 | (68) | (83) | (43) | (35) | (31) | (27)

23 | 9-10 | 12-14 | 18-19 | 25-26 | 33-34 | 49-50 | 56-57
(103) | (89) | (66) | (51) | (42) | (35) | (31)

27 10-11 | 15-16 | 21-22 | 29-30 | 37-39 | 56-58
(96) (87) (63) (49) (43) (35)

51 19-21 | 27-29 | 39-40 | 54-55
(81) (75) (60) (50)

z(1) = 28.5481201472 8984748207 2902880080 6776859476 7334323951.

To eliminate the possibility of round-off errors we have calculated elements
gir. of matrix G o with a precision § = 107%°. The computation was done
with various steps h and numbers N of nodes on each subinterval. The results
are showed in the Table 1, where numbers on the first line show the correct
decimal places of the solution at point ¢ = 1 for each A and N. Numbers on
the second line in parentheses show the maximum number of iterations made
on each of n subintervals with nh < 1.

4. DM-METHOD WITH NODES AS ZEROES OF THE GEGEN-
BAUER POLYNOMIALS

We will consider a sheme where the nodes are the set of zeroes of the Gegen-
bauer polynomials C3/(x) that can be extended with endpoints 1. There it

is four cases: —1 < z,25<...<zy <1, —-l=z<z<...<z2N8y<]1,
“l<z; << ...<azy<znyy1 =1, —-l=z<z <...<2N8 <
N1 = 1. Here zp, k = 1,2,..., N are zeroes of the polynomials Cx (z). Let

us choose the case 2). Pseudoinverse matrices can be obtained by formulas of
Section 2 if we replace N + 2 for N + 1. Thus,

Byi1 = Bg\%_l + diag(co, 1, - -y eN)W N1, (4.1)
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where elements of the matrices BS\,H and Wy are

1 i 1
N / PN41(7) dr, wi = — ’
P (k) T = T P1(Th)
i,k=0,1,...,N, pyp1(z) = (14 2)C) (z). (4.2)

Using (2.10) and (4.1) in the case of one equation y' = f(x,y), we obtain:

YN+1 =Yl = [Bs\%l + diag(co, c1,-- -, eN)Wnt1]fn41, (4.3)

where YN+1 = (y07y17' .. 7yN)T7fN+1 = (f(moayo)af(xlayl)a .- _,f(.’L'N,yN))T,
1= (171)"')1)T7 Yk :y(l’k),kZO,l,...,N.

In order to create the sheme with a higer-order precision for yy 41 = y(zn41) =
y(1) at the endpoint, we use the following idea. Multiplying the equation
y' = f(z,y) by (1 —2z2)*~'/2, X > 1/2, integrating it on the interval [—1, 1],
applying the integration by parts and the Gausa-Lobatto quadrature formula
at the nodes —1 =zp,21 < ... < zy < znyy41 = 1, lead to

mN+1yN+1—moyo+kawkyk— 2A-1)" ka (1—23) f(xk, yx), (4.4)
k=1

where my, > 0 are coefficients of quadrature, which can be represented by the
Gegenbauer polynomials. Using (4.4) and taking account that myy; = mo,
we obtain

N N
YN+1 = Yo — Z brzryr + (2A — 1) Z (1 —2) f (e, yr), (4.5)
k=1 k=1
where b, = my/mo,k = 1,2,...,N. The constants ¢; in (4.3) are arbitrary.

For example, we can choose ¢; = 0. The choice of the constant ¢y gives a
possibility to make the Dalquist function of the stability R(z) given in [4] so
that

1) |[R(2z)] < 1, if Rez < 0; 2) R(oo) = 0. This ensure the L-stability of
the method regardless the choise of the other constants c¢1,cs,...,cn. It is
possible also to choose constants c; in the other way.

Concluding remarks. Formally, the DM-method can be used at the nodes
(2.26) with arbitrary distributed z; satisfying the inequalities —1 = zy < 21 <

. < xn41 = 1, if elements of the matrix G2 are calculated by (2.27) with
pni2(7) = (1 —2?)(z —z1)...(x — zn). However, in the generalal case the
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equality (2.16) does not hold and the approximation is not nonsaturated. We
mention some interesting special cases.

1. The nodes z; are distributed on [—1, 1] uniformly. In this case ||Gn+2||
increases together with N for N > 8, and the DM-method becomes unstable.
Therefore, the DM-method can be used in the case of uniformly distributed
nodes only with small N, for example, with N < 8.

2. z; are zeroes of Ty (x) and endpoints 1, where T (z) is Chebyshev’s
polynomial of the first kind. In this case ||Gn42]| = 1 + ay, and ay — 0
as N — 4o00. The corresponding approximation is also nonsaturated. The
DM-method can be used with precision near to the case with nodes as zeroes
of Chebyshev’s polynomials of the second kind.

3. x; are zeroes of Legendre’s polynomial Py(z) and endpoints +1. In
this case ||Gn2]| = 1, the approximation is also nonsaturated and the preci-
sion of the DM-method is near to the precision in the case with Chebyshev’s
polynomials.

4. z; are zeroes of Jacobi’s polynomial PI(VI’I)(Z’) and endpooints £1. In
this case ||Gn42]| = 1, the approximation is nonsaturated, but the preci-
sion of the DM-method is higher than for Chebyshev or Legendre polynomi-
als. This follows from the other estimation for o(N,h) in (3.5). In this case
o(N,h) = O(h®N*1) as an estimation for the remainder of the Gauss-Lobatto
quadrature.

5. The choise ¢; = 0,i =1,2,..., N + 1, and z; the same as in 4, leads to
the Lobatto 3A sheme [4]. The method is A-stable, but not L-stable.

Choosing z; as above and

1
¢ :/ (1—2)P{ (z)de,i =0,1,...,N +1, (4.6)

i

lead to the Lobatto 3C method. The stage of this method is N + 2. Similar
method with N = 2 is given in [4] and it is proven that this method is
algebraically stable. It is possible to obtain other schemes by choise of the ¢;.
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