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ABSTRACT

A conservative and monotonous finite difference scheme is proposed for solving PDE
describing the kinetics of molecules in ceramics. Numerical results of computational
experiments are presented.

1. INTRODUCTION

Mathematical model of gas-liquid type phase transition in a self-interacting
molecular gas in non-homogeneous temperature field is considered. Such tran-
sition creates the stochastic molecular motion [1]. It is considered that the
molecules are emitted from the surfaces. The system has cylindrical symme-
try and only one-dimensional motion of molecules is examined. The applied
temperature T' gradient causes the motion of molecules. Then the equation
of flux of molecules can be written as [2]:

7= 0aen [% (?&i‘;ﬁ—?ﬁ))b (1.1)

v et -0 [ (7855 - 785)].

where Q) is a transition frequency of particle from one site to another; c(z) €
[0, 1] is the concentration of molecules; g is the interaction energy; and k is the
Boltzmann constant. The force created by temperature gradient is included
into the equation (1.1). Otherwise phase transition cannot go without inclu-
sion of fluctuations. Such external force appears due to the fact that molecules
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jump faster from sites with higher temperature (see, e.g., thermal electricity).
Of course it depends substantially on the material. The conservation law of
molecules is expressed in the form of flux continuity equation:

oe + o7 =0. (1.2)
ot Oz

The system of equations (1.1), (1.2) is essentially non-linear. The concentra-
tions on boundaries are fixed.

As it is known not for all difference schemes unambiguous physical solu-
tions are obtained. Especially, this problem is actual for stochastic processes,
when the stochasticity can occur as a result of physical process or the real-
ization of the difference scheme as well. In order do separate the physical
and "mathematical” stochasticities, the difference scheme must be conserva-
tive, monotonous and desirably absolutely stable. In this article conservative,
monotonous, and absolutely stable difference scheme is proposed for descrip-
tion of stochastic processes.

2. DIFFERENCE SCHEME

We will substitute the concentration ¢(z) by W (z):

c(z) = W(x)emp{/j da:2(1a_ i {% (;((”;iz)) - ;((?)ﬂ } 2.1)

where xo is an arbitrary constant which don’t affect the coefficients of the
difference scheme. Then the flux can be written as:

J = —Qa-ch {% (é(é * j)) _ ;((? )} (2.2)
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Using the balance method and substituting (2.1) we obtain the following dif-
ference scheme

~

[
AL+ Bidt] - Qe = =, =12, M - 1, (2.3)

where [ is the time step index. The coefficients are

Qoa - ch [% (5«— — ;—:11)] Bi—1/2
hy [1—exp(=Bi—1/2)] ’
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Qoa - ch [% (;:11 - %—)] Biv1/2 €xp(—Bit1/2)

B; , (2.5)
z hi [1 - eXP(_ﬁi+1/2)]
1
Qi = A1+ B+ o (2.6)
where
2q Cit1 C;
ﬂi+1/2 = ?(1 - C)i+1/2 <T:1 - ﬁ) . (2.7)

The elaborated difference scheme is conservative, the coefficients A, B, () obey
the known monotonous conditions, and as shown by the numerical calcula-
tions it is absolutely stable. The difference scheme (2.3-2.7) with respective
boundary conditions of the first-type is solved numerically by the factorisation
method.

3. NUMERICAL RESULTS
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Figure 1. The distribution of con- Figure 2. Total phase diagram

centration along x-axis at various
time moments

Figure 3. The distribution of concentration = Figure 4. Total phase diagram
along z-axis at various time moments
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The calculations are provided in two cases - with smaller concentration than
critical one on the boundaries, when the system reaches the homogeneous
concentrations which are equal to the boundary concentration, and with the
concentration at boundary higher than critical concentration. In our case the
critical concentration can be estimated as 0.2.

The results of numerical simulations are shown in Fig.1-2. The grid-step h; is
chosen to be a constant but the size (undimensional value) of the system equal
to 1. Temperature varies from ¢/kT = 0.2 to ¢/kT = 1.8 on the boundaries.
Initial concentration is zero inside the ceramics material. It is considered that
the boundary conditions are changed to ¢y = ¢y = 0.1 at time moment ¢t = 0
in Fig.1. The unstationary concentration distribution is shown in Fig.1. It
must be mentioned that the concentration in this case is less than critical one
and the physical solution is ¢(z) = 0.1 which is also the trivial solution of such
problem. The asymmetry of the curves is created by the temperature gradi-
ent. As shown by the numerical calculations the stationary solution remains
as trivial solution independently from the value of time step and it means that
the difference scheme is absolutely stable.

Fig.2 shows the total phase diagram. It is the sum of phase diagrams at
various cross-sections of coordinate z. Each phase diagram shows ¢ vs. ¢ at
appropriate time moments and given spatial coordinate. Each phase curve is
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regular in Fig.2, meaning that the process is deterministic. concentrations to
co = cpr = 0.7 at time moment ¢ = 0. These boundary concentrations are
more than critical ones. In this case the motion of molecules has a stochastic
nature as shown in Fig.3-8. The unstationary concentration distribution is
shown in Fig.3, where the creation of the initial irregular nature of concen-
tration motion is shown in the small box. The total phase diagram is shown
in Fig.4 at the same cross-sections as in previous case. At some cross-sections
the curves are irregular as shown in Fig.5-8. In Fig.5 the curve of phase dia-
gram is regular and the process is deterministic at every time moment. Such
behaviour is characteristic also for the cross-section near the second boundary
as shown in Fig.8. In Fig.6-7 irregular processes are shown and the motion of
molecules is characterized by stochastic motion.

As can be seen from figure Fig.3, the process of kinetic can be divided into
three time periods: initially the process is in time and space determined, then
it becomes stochastic, and finally the process is deterministic again - liquid-gas
system is formed.
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