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ABSTRACT

A family of the functions, intended for a construction the exact travelling wave solutions
of nonlinear partial differential equations, is given. Exact solutions of the Klein-Gordon
equation with a special potential are obtained. The behavior of complex and
hypercomplex solutions of the second order is presented.

1. INTRODUCTION

In this paper a short analysis of the family {q} of the functions, intended
for a construction the exact travelling wave solutions of partial differential
equations (PDEs), is given. The first function (inflection function), which
is denoted qg, was defined in [1]. Due to this function the exact travelling
wave solutions of some reaction-diffusion equations were obtained. The sec-
ond function (complex function), which is denoted ¢1, was defined in [2].
The hypercomplex functions ¢,, defined later [3], filled out the family gq. The
corresponding family 2¢ —1 of the exact travelling wave solutions of the Klein-
Gordon (KG) equation was obtained in [4]. The relations between hypercom-
plex solutions and Special Unitary Groups SU(n) was given in [5]. Due to the
family {q} the exact solutions for a lot of the nonlinear PDEs, encountered in
different areas of physics, were btained.

On a base of the family {2¢ — 1} in this paper we construct the exact
solutions of the KG equation with more general potential. The behavior of
two solutions (complex and hypercomplex of the second order) of this equation
is given. It is important to stress that the KG equation describes a two level
system, and hence the given below solutions characterize the transfer from
one level to another one.
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The paper is organized as follows. In Sec. 2 we write out the explicit
expressions of the functions ¢. In Sec. 3 we describe the KG equation with
special potential and give a family of its exact solutions. In Sec. 4 we show
the behavior of the complex and hypercomplex of the second order solutions.
And finally, in Sec. 5 some applications are given.

2. THE FAMILY {Q}

We deal with a class of integrable PDEs. There are several methods for ob-
taining the exact solutions of those equations. For the purposes of the method
of substitutions, we have proposed a family {¢} of the functions, defined and
constructed in our previous papers. An application of the polynomials on
these functions makes this method more efficient. Due to the fact, that the
family contains not only real functions but also complex and hypercomplex
functions, we have extended a class of exact solutions for a large class of the
integrable equations.

Let us write out the functions g of real variable z. Two real functions are
defined as

1 1

1+ exp(z)’ 4(2) = 1 —exp(z)’

Two complex conjugate functions are defined as
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The hypercomplex functions of the second order are defined as
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where the hypercomplex numbers M are the quaternions [6]
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The hypercomplex functions of n-th order are defined as
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Here E,,, My,...,M,, is a set of hypercomplex numbers of n-th order, E,, is
a unit and the numbers M; possess the following properties:

MZM]:—MJMl for 275],

M;M; = —E, for i,j=1,2,...,m.

Note that, for the matrix representation of the numbers Mj, the index n
corresponds to an order of n x n-matrix M;. Also, the index m is equal
to a number of linear-independent matrices M, that are unitary (M j_l =
M7), anti-Hermitian (M} = —Mj), and anticommuting (M;M; = —M;M;)
matrices. A symbol x denotes a passage to the complex conjugate trasposed
matrix. It is known that m = 3 for n = 2, m = 1 for n = 3, and m = 4 for
n = 4.

A fundamental property of the functions ¢ is that any function g on the
family {q} satisfies the logistic equation ¢’ = ¢®> — ¢ (Theorem 1 in [4]). It
follows, that n-th derivative on ¢* is expressed by polynomial of (n + k)-th
order on ¢q. A basic property of the functions ¢ formulates as follows: if the
polynomial function

2

u=coq" + 1" 2"+ e

satisfies a PDE for ¢ = qg, then u satisfies the equation for any ¢ from the
family {q}.

3. KLEIN-GORDON EQUATION

Now we investigate the KG equation in one space dimension with special
potential

! A gyt 2y + 2
ter —u = Q'(w), Q) = @) T ((@)E 1), (1)
for Kk =1,2,...; A > 0. For moving frame of reference z = z — vt, where v
is a velocity, we reduce the equation (1) to the ordinary differential equation
AMk+1 E—1 &=
(1—U2)u”:§< _]: ukki_Qu_f_ A u%) (2)

On the base of the family {q} we construct the exact solutions of the equation
(2) and hense of the equation (1). They are

u(z;n, k) = 2qn(xaz/k) — B, nk=1,2,..., (3)

where

a=+2\/(1-v2), ?<L
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This result can be verified by direct substitution of functions (3) to the equa-
tion (2).

This family includes the family {2¢—1} of the exact travelling wave solutions
for the KG equation with potential U = (\/4)(u?—1)? (particular case of Q for
k =1). A real solution of the KG equation with this particular choise of the
potential have been known for a long time [7; 8], this is so-called kink-solution
up = tanh(—az/2). It follows from the property 2¢o(az) — 1 = tanh(—az/2),
that the kink-solution belongs to the family (3).

The KG equation with potential U is usually considered together with the
boundary conditions of two level system, i.e. u = —1 for z - —occ and u =1
for z —» oo. The KG equation with a special potential, for example for even
k, can be considered in addition with equal boundary values.

4. THE BEHAVIOR OF THE SOLUTIONS

In this section we show the behavior of the complex and hypercomplex of the
second order solutions. Let

¢(az) = arccot(sinh(—az/k)).
Then from (3) for n =1 we take the solution

ur = (21 (az/k) — 1)* = exp(ikg).
Let (a1,as2,as) = (0,0, 1), then from (3) for n = 2 we take the solution

uz = diag(exp(—ikg), exp(ik)).

In our previous papers [4; 5] it is proved that the matrix solution u(z;2,1)
is an element of the Special Unitary Group SU(2) of spinorial rotations. It
is easy to verify that the matrix solution u(z;2, k) is an element of SU(2)
also. It follows that the matrix u(z;2, k) rotates the unit sphere around the
vector (aq, as,as), and the matrix-solution uy rotates the unit sphere around
the vector (0,0,1). Note, that if the phase of the solution u; changes on 6,
then the unit sphere turns on angle 26.

The solution u; is represented as a spiral curve in the system of coordinates
(Ru, Su, z). For even integer k of coordinates (Ru, Ju, z) this curve has k/2
loops. If the center of the unit sphere moves on this curve, then the rotational
sphere derive a tube around the wave u;. During this process any separate
point on the sphere forms a spiral around the wave u;. As the result we have
a total set of the spiral curves, winding around wave ui, i.e. we have a full
tube, consisting of these spirals. Thus we can say, that the solution us forms
a surrounding field around the wave u;.
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5. SOME APPLICATIONS

Davydov [8; 9] has described a problem of electron transfer across biomem-
brane along a-spiral protein molecule, namely along a chain of the peptide
groups (PGs), which are connected by the hydrogen bonds. In the simple
case a potential field among two adjacent PGs can be described by potential
U, mentioned above. In the general case, when a deviation of PGs was taken
in consideration, Davydov [9] has described a model of electron transfer by
system of two equations. As a result, he describes an electron transfer by the
wave function (see [9, p.99])

Y(z,t) = (2) exp(i(kz — wt)), ® = Asech(az).

Our approach allows us to consider the Davydov’s solution together with
a matrix solution. Hense we have got a surrounding field around the wave
exp(i(kx — wt)) inside the region (—®, ®). Such enclosing is a significant ad-
dition to Davydov’s electrosoliton solution. A validity of this matrix solution
is based on the following evident lemma.

LEmMMA 5.1. If the plane wave Aexp(xi(kx — wt)) satisfies the linear differ-
ential equation, then the matrixz function

u(z,t) = Adiag(exp(—i(kz — wt)),exp(i(kz — wt)))
also satisfies this equation.

It follows from this lemma that a plane wave exists together with its sur-
rounding field, which is formed from the infinity set of spirals, twisted around
plane wave.

In the case, when we describe the model of electron transfer along a-spiral
protein molecule, using KG equation with special potential, we construct a
surrounding field around spiral wave u;. Moreover using phase lag we can con-
struct the three twisted one around another surrounding fields, corresponding
to possible pathes of an external electron along the three chains of hydrogen
bonds.

Another possible application of the family of exact solutions (3) can take
place in physics of the elementary particles. Here we started from an obser-
vation, that the spiral u; characterizes a trajectory of moving point from one
level (state) to another. The hypercomplex solution uy forms a surrounding
field, which consists on a family of the spirals. A combination of these spirals
can be useful for the electroweak currents description in the reactions of the
particles decay.
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